Product Description

Simplex stainless 304 Roller Chain (08B-1, 24B-1)
 

The most commonly used chain is roller chain or as it is also known transmission chain. These are the simplest chain drives, Used mainly for transmitting power. Can be supplied from 3mm pitch up to 4″ pitch in either mild steel or stainless steel.

 

DIN/ISO
Chain No.
Pitch Roller
Diameter
 
Width Between
Inner Plates
 
Pin Diameter
 
Pin Length
 
Inner Plate depth
 
Plate thick
ness
 
Ultimate
Tensile
Strength
 
Average
Tensile
Strength
Weight Per Meter
 
Mm mm mm mm mm mm mm mm kN/LB kN Kg/m
04B-1 6.000 4.00 2.80 1.85 6.80 7.80 5.00 0.60 3.0/682 3.2 0.11
05B-1 8.000 5.00 3.00 2.31 8.20 8.90 7.10 0.80 5.0/1136 5.9 0.20
*06B-1 9.525 6.35 5.72 3.28 13.15 14.10 8.20 1.30 9.0/2045 10.4 0.41
08B-1 12.700 8.51 7.75 4.45 16.70 18.20 11.80 1.60 18.0/4091 19.40 0.69
10B-1 15.875 10.16 9.65 5.09 19.50 20.90 14.70 1.70 22.4/5091 27.50 0.93
12B-1 19.050 12.07 11.68 5.72 22.50 24.2 16.00 1.85 29.0/6591 32.20 1.15
16B-1 25.400 15.88 17.02 8.28 36.10 37.4 21.00 4.15/3.1 60.0/13636 72.80 2.71
20B-1 31.750 19.05 19.56 10.19 41.30 45.0 26.40 4.5/3.5 95.0/21591 106.7 3.70
24B-1 38.100 25.40 25.40 14.63 53.40 57.80 33.20 6.0/4.8 160.0/36364 178.0 7.10
28B-1 44.450 27.94 30.99 15.90 65.10 69.50 36.70 7.5/6.0 200.0/45455 222.0 8.50
32B-1 50.800 29.21 30.99 17.81 66.00 71.0 42.00 7.0/6.0 250.0/56818 277.5 10.25
40B-1 63.50 39.37 38.10 22.89 82.20 89.2 52.96 8.5/8.0 355.0/80682 394.0 16.35
48B-1 76.20 48.26 45.72 29.24 99.10 107.0 63.80 12.0/10.0 560.0/127272 621.6 25.00
56B-1 88.90 53.98 53.34 34.32 114.60 123.0 77.80 13.5/12.0 850.0/193180 940.0 35.78
*Bushing chain: d1 in the table indicate the external diameter of bushing
 

We own the sophisticated equipment and the advanced technology, such as: 
1. CAD Designer
2. Wire Cutting Machine
3. Chain Running In Machine
4. Conveyor Furance
5. Ball Drift
6. Shot Peened Parts
7. Design Of Link Plate Waist

Company Detail:

GOODLUCK TRANSMISSION is 1 of a professional exporter with exporting POWER TRANSMISSION PARTS: Roller chains,conveyor chain,stainless steel chains, agricultural chains, steel detachable chains, special chains, sprockets, s. S. Sprockets, HRC couplings, pulleys, bushes etc. All these products have been supplied regularly to World Wide for over 15 years.  

 

Welcome contact for more detail.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Transmission Chain
Material: Stainless steel
Surface Treatment: Polishing
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Pls contact with Sellers
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

transmission chain

What are the benefits of using a corrosion-resistant material for a transmission chain?

Using a corrosion-resistant material for a transmission chain offers several advantages. Here’s a detailed answer to the question:

Corrosion-resistant materials, such as stainless steel or specialized coatings, provide the following benefits for transmission chains:

1. Enhanced Durability: Corrosion can significantly reduce the lifespan of a transmission chain by causing surface degradation, pitting, or rusting. By using a corrosion-resistant material, the chain’s durability is improved, allowing it to withstand exposure to harsh environments, chemicals, moisture, and temperature variations.

2. Extended Service Life: Corrosion-resistant materials help prevent or minimize the formation of rust or corrosion on the chain’s surface. This extends the chain’s service life, reducing the frequency of replacements and associated downtime and maintenance costs.

3. Reliable Performance: Corrosion can negatively impact the performance of a transmission chain by increasing friction, decreasing flexibility, and impairing the smooth engagement with sprockets or other components. Using a corrosion-resistant material ensures consistent and reliable performance, allowing the chain to operate smoothly and efficiently.

4. Reduced Maintenance: Corrosion-resistant transmission chains require less maintenance compared to chains made from non-corrosion-resistant materials. They are less prone to surface damage, require fewer lubrication intervals, and generally demand less attention to prevent deterioration. This results in reduced maintenance efforts and costs.

5. Suitable for Challenging Environments: Many industries and applications expose transmission chains to corrosive substances, moisture, humidity, or high temperatures. Using a corrosion-resistant material ensures that the chain can perform reliably in these challenging environments, such as marine, chemical processing, food processing, or outdoor applications.

6. Improved Safety: Corrosion can compromise the integrity and strength of a transmission chain, potentially leading to chain failure or unexpected equipment downtime. Utilizing a corrosion-resistant material helps maintain the chain’s structural integrity, reducing the risk of accidents, equipment failures, and associated safety hazards.

It’s important to consider the specific requirements of the application and the level of corrosion resistance needed when selecting a transmission chain material. Factors such as environmental conditions, temperature, exposure to chemicals, and industry standards should be taken into account to ensure optimal performance and longevity of the chain.

transmission chain

How does the choice of material impact the performance of a transmission chain?

The choice of material for a transmission chain plays a crucial role in its overall performance and durability. Here’s a detailed answer to the question:

1. Strength and Load Capacity: Different materials have varying levels of strength and load-carrying capacities. High-strength materials like alloy steel or stainless steel offer superior strength and can withstand heavy loads. The choice of a material with adequate strength ensures that the transmission chain can handle the required load without premature wear or failure.

2. Wear Resistance: The material used in the construction of a transmission chain affects its wear resistance. Some materials, such as hardened steel or certain alloys, have excellent wear resistance properties, allowing the chain to withstand abrasive conditions and prolong its lifespan. Choosing a material with good wear resistance reduces the need for frequent chain replacements and maintenance.

3. Corrosion Resistance: In environments where corrosion is a concern, such as outdoor or corrosive industrial settings, selecting a material with high corrosion resistance is essential. Stainless steel or specially coated chains offer excellent resistance to rust and corrosion, ensuring reliable performance and longevity even in harsh conditions.

4. Fatigue Strength: The material’s fatigue strength is crucial in applications where the transmission chain undergoes repeated cyclic loading. Fatigue failure can occur when a chain is subjected to continuous stress cycles, leading to cracks and eventual failure. Materials with high fatigue strength, such as specific alloys or heat-treated steels, are ideal for applications that require excellent fatigue resistance.

5. Temperature Resistance: The operating temperature of an application can impact the choice of material for a transmission chain. Some materials, such as heat-treated steels or specialized alloys, can withstand high-temperature environments without losing their mechanical properties. In contrast, certain plastics or polymers may be suitable for low-temperature applications. Choosing a material that can withstand the expected temperature range ensures optimal performance and prevents premature chain failure.

6. Cost Considerations: The choice of material also involves cost considerations. Some high-performance materials, such as stainless steel or specialized alloys, may have a higher initial cost compared to standard carbon steel chains. However, the increased performance, longevity, and reduced maintenance requirements provided by these materials may result in long-term cost savings.

It’s important to carefully assess the specific requirements of the application, including load capacity, environmental conditions, and operating parameters, when choosing the material for a transmission chain. Consulting with industry experts or manufacturers can help determine the most suitable material for optimal chain performance and longevity.

transmission chain

How does the choice of sprockets impact the performance of a transmission chain?

The choice of sprockets has a significant impact on the performance and longevity of a transmission chain. Here’s a detailed explanation:

1. Tooth Profile: The tooth profile of the sprockets should match the design of the transmission chain. Common tooth profiles include standard, modified, and special profiles. Proper matching ensures smooth engagement, reduced noise, and efficient power transmission.

2. Pitch Diameter: The pitch diameter of the sprockets determines the chain’s speed ratio and the rotational speed of the driven component. It should be selected based on the desired speed and torque requirements of the system.

3. Number of Teeth: The number of teeth on the sprockets affects the chain’s engagement and load distribution. Sprockets with a higher number of teeth distribute the load over more contact points, reducing wear and increasing the chain’s capacity to handle higher loads.

4. Material Selection: The material of the sprockets should be compatible with the chain and the operating environment. Common materials include steel, stainless steel, and plastics. Consider factors such as strength, wear resistance, and corrosion resistance when selecting the sprocket material.

5. Sprocket Hardness: The hardness of the sprockets is important to withstand the chain’s contact forces and resist wear. Proper hardness ensures that the sprockets maintain their tooth profile and engage with the chain effectively over an extended period.

6. Sprocket Alignment: Proper alignment of the sprockets is crucial to minimize wear, noise, and premature failure. Misalignment can lead to uneven load distribution, increased stress on the chain, and accelerated wear. Ensure that the sprockets are aligned both axially and radially to maintain optimal performance.

7. Lubrication: Sprockets should be adequately lubricated to reduce friction, wear, and heat generation. Proper lubrication ensures smooth rotation and minimizes the risk of chain failure. Consider using lubricants specifically formulated for sprocket and chain applications.

8. Maintenance: Regular inspection and maintenance of the sprockets are essential to detect any signs of wear, misalignment, or damage. Replace worn or damaged sprockets promptly to prevent chain slippage, excessive wear, and potential system failure.

Choosing the appropriate sprockets that are compatible with the transmission chain and the operating conditions is critical for achieving reliable and efficient performance. Consult the manufacturer’s guidelines and recommendations for selecting the right sprockets based on the specific application requirements.

China high quality Industrial Agricultural Roller Chain Steel Stainless Transmission Carbon Heavy Duty Conveyor Customized Link Chain  China high quality Industrial Agricultural Roller Chain Steel Stainless Transmission Carbon Heavy Duty Conveyor Customized Link Chain
editor by CX 2024-05-08